Problem 14

A computer program gives the result $1 / 6$ for the sum of the series $\sum_{n=0}^{\infty}(-5)^{n}$. Show that this series is divergent. Do you see what happened? Warning hint: Always consider whether an answer is reasonable, whether it's a computer answer or your work by hand.

Solution

The series is considered to be divergent because the sum doesn't evaluate to any particular value.

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-5)^{n} & =(-5)^{0}+(-5)^{1}+(-5)^{2}+(-5)^{3}+(-5)^{4}+(-5)^{5}+\cdots \\
& =(1)+(-5)+(25)+(-125)+(625)+(-3125)+\cdots \\
& =?
\end{aligned}
$$

The computer program foolishly used the infinite summation formula,

$$
\sum_{n=0}^{\infty} c r^{n}=\frac{c}{1-r},
$$

which only applies if $|r|<1$.

$$
\sum_{n=0}^{\infty}(-5)^{n} \neq \frac{1}{1-(-5)}=\frac{1}{6}
$$

